Connectivity and Edge-computing for Digital Agriculture

Deepak Vasisht and Vikram Adve

Students: Emerson Sie, Aganze Mihigo, Siddarth Aananth, Kavin Jindel, Rutva Pandya, Aditya Sengupta

i-FARM TESTBED

I ILLINOIS

Connectivity is critical for Digital Agriculture

Rural broadband connectivity for agriculture can contribute 500 billion USD additional global GDP by 2030

Pandemic-induced shifts to education necessitate e-learning adoption

But.. over half the farmers in the US do not have adequate Internet access on farms

Fundamentally, farm of the future cannot be realized without connectivity solutions of the future

Example Applications for Rural Connectivity

- Need continuous connectivity for tele-operation
- Need to stream videos collected on the field for intelligence
- Cannot be supported by rural connectivity solutions today

Farm Network Setup

IILLINOIS

Applications & Requirements: High Bandwidth Tasks

Sensor	Data Volume	Frequency	Use cases
RGB Camera	50-200 MB per hectare	Multiple times	Visual inputs
	20 - 81 MB per acre	a day	for farmer
Thermal	30 MB per hectare	Multiple times	Water storage,
Camera	12 MB per acre	a day	heat stress
Multi-spectral Camera	1-5 GB per hectare 0.4 - 2 GB per acre	Once a week	Plant health, yield, disease prediction

Applications & Requirements: Realtime Tasks

Sensor	Bandwidth	Latency required	Use cases
Teleoperation	4-10 Mbps	<100 ms	Remote operation for berry picking, virtual walkthroughs
Edge-controlled Robots	10s of Mbps	<100 ms	Complex manipulation tasks like weeding

Range

- Lower range increases cost and reduces deployability
- Example: Wi-Fi mesh over 100 acres, requires 10-15 devices (200 m range)

Crops and canopies

- Reduces range and bandwidth
- Effect even higher for below-canopy sensors and robots
- As low as 30m for under-canopy, 5GHz Wi-Fi

Usability

- Power
- Setup and debugging
- Network management

Our Goal: Cutting-Edge Connectivity Testbed

New connectivity solutions: Citizens Band Radio Service (CBRS), Satellite networks, Fiber, Low power wide area networks

Edge computing: Dynamically shifting bottlenecks between networking and compute

Data Modeling and Visualization across Modalities: MyFarm app

Current Approach Demands Dense Connectivity

- Needs a dense mesh of cellular networks
- •Fiber connectivity costs \$10k per mile
- •Farms are large (Illinois is 72% farmlands)

Financially not viable for companies to deploy!

ILLINOIS

Observation: Sparse demands for connectivity

- Farms need sparse connectivity
 - Only some parts of the farm are actively being worked on
 - The connectivity need shifts to different parts over time
- Example: Tillage and planting activity takes multiple days on a farm
- A farm robot covers about 20-50 acres per day

Idea: Bring your own network

Vehicle for Mobility + Power

CBRS = Citizens Broadband Radio Service M2M = Machine-to-Machine

Benefits of Horizontal Motion

BYON

BYON = Build Your Own Network

CBRS Measurements

ILLINOIS

LLINOIS

CBRS Measurements

No Crop Blockage

With Crop Blockage

i-farm.illinois.edu

Welcome to the USDA's only Farm of the Future!

About us

I-FARM stands for "Illinois Farming and Regenerative Management." This University of Illinoisled study - funded for three years and \$3.9M by the U.S. Department of Agriculture's National Institute of Food and Agriculture (NIFA) — is developing an 80-acre agricultural testbed, where commodity crops, cover crops, and livestock are farmed using synergistic, sustainable practices.

The I-FARM testbed features improved precision farming with remote sensing; new autonomous solutions for cover-crop planting, variable-rate input applications, and mechanical weeding; and artificial intelligence-enabled remote sensing for animal health prediction, nutrient quantification, and soil health.

Videos from the field

A full I-FARM video playlist may be found on YouTube >>>

I-FARM University: Passing on the knowledge!

I-FARM will demonstrate new technologies, data-driven products, and services for farmers and industry, easing adoption and opening new markets.

go.illinois.edu/ifarmupdates

Subscribing to: I-FARM Updates

I-FARM stands for "Illinois Farming and Regenerative Management." This University of Illinois-led study funded for three years and \$3.9M by the U.S. Department of Agriculture's National Institute of Food and Agriculture (NIFA) — is developing an 80-acre agricultural testbed, where commodity crops, cover crops, and livestock are farmed using synergistic, sustainable practices.

The I-FARM testbed features improved precision farming with remote sensing; new autonomous solutions for cover-crop planting, variable-rate input applications, and mechanical weeding; and artificial intelligenceenabled remote sensing for animal health prediction, nutrient quantification, and soil health.

Join our mailing list to receive the latest updates on the I-FARM project. This includes research, events and extension programming.

reCAPTCHA Privacy - Terms

Thank you for joining our mailing list.

farmdoc Sponsors

TIAA Center for Farmland Research

COBANK CORTEVA FINANCIAL **GREER CORTEVA**

farmdoc Educational Partners

College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Department of Agricultural & Consumer Economics

Extension

Gardner Agriculture Policy Program

Thank You for joining us!

Visit us at

farmdocDAILY .Illinois.edu

Subscribe for Latest News Updates

College of Agricultural, Consumer & Environmental Sciences

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

For the webinar archives and 5-minute farmdoc Subscribe to our channel YouTube.com/@farmdoc

